
Elastic deformation and stability in pentagonal nanorods with multiple twin boundaries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 113

(http://iopscience.iop.org/0953-8984/14/1/310)

Download details:

IP Address: 171.66.16.238

The article was downloaded on 17/05/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 113–122 PII: S0953-8984(02)26845-9

Elastic deformation and stability in pentagonal
nanorods with multiple twin boundaries

Feng Ding1,2, Hui Li1, Jinlan Wang1, Weifeng Shen1 and
Guanghou Wang1,3

1 National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, People’s Republic of China
2 Department of Physics, Qufu Normal University, Qufu 273165, People’s Republic of China

E-mail: ghwang@nju.edu.cn

Received 6 July 2001, in final form 25 October 2001
Published 7 December 2001
Online at stacks.iop.org/JPhysCM/14/113

Abstract
In this paper we calculate and discuss the elastic deformation in a new kind of
nanorod, a pentagonal rod with multiple twin boundaries, on the basis of elastic
theory. Present theory shows that the central part of the pentagonal rod is highly
compressed whereas the outer part is tensioned. The average bond length in
the central part is about 1–2% shorter than that in the outer part. Present theory
also indicates that the nanorod structure is metastable and will disppear at a
certain critical size (around several tens of nanometres).

1. Introduction

Recently, nanometre-sized particles and rods have become a focus of interest due to their
remarkable mechanical properties, as well as their electronic, optical and magnetic properties,
which are often different from those of the corresponding bulk material [1–4]. The structure
of nanometre-sized particles and rods is the basis for the study of their physical and chemical
properties. Multiply twinned particles (MTPs) (including icosahedra, decahedra and Marks
decahedra) with five-fold symmetry axes are a type of structure unique to nanometre-sized
particles [5–7]. The structure and the stability of these MTPs have been well documented [8].

For nanorods, the structure with multiple twin boundaries is hardly ever observed. Small
metal rods with a size of less than several nanometres often have a shell-like or helical
structure [9, 10], whereas large rods often have the same structure as the corresponding bulk
material [11].

Recently, a new kind of nanorod—a pentagonal copper nanorod with five-fold symmetry—
has been fabricated by Lisiecki et al [12, 13]. These rods are of the order of 1 µm long and
have a diameter up to 25 nm. The five-fold symmetry is very interesting since it means that
3 To whom the correspondence should be addressed.
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Figure 1. The structure of pentagonal nanorods with MTRs. (a) A three-dimensional graph of an
MTR. (b) The projection of the nanorod from the axial direction (z direction). (c) An MTR can
be divided into five triangular rods connected to each other by (111) twin boundaries. The broken
lines indicate the twin boundaries. (d). Each triangular rod with edge lengths a and h is deformed
by a free triangular rod with fcc structure and edge lengths a0 and h0.

the structure of these rods is different from that of the corresponding bulk material (Cu bulk
material has an fcc structure). This structure has been explained in terms of well-truncated
decahedra [12].

As figure 1 shows, such a pentagonal nanorod contains five triangular rods. As in their
bulk material structure, these triangular rods have an fcc structure and are connected to each
other by (111) twin boundaries (the broken lines in figure 1(c) indicate twin boundaries). Thus,
we can call it a multiply twinned rod (MTR). It is well known that the subunits in MTPs are
deformed; the 20 tetrahedra in an icosahedron and the five tetrahedra in a decahedron are
deformed because of the geometrical configuration of the icosahedron and decahedron [8]. In
a similar way the five triangular rods in the pentagonal rod are also deformed.
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Figure 1(c) shows the structure of a five-fold nanorod and figure 1(d) shows a triangular
rod. The angle between two adjacent twin boundaries is 72◦ whereas the angle between the
two (111) facets of an undeformed fcc structure is 70.525◦. In order to form a pentagonal
rod without any gaps these triangular rods must be deformed, and so elastic deformation and
elastic energy exist in the MTR. It is the elastic energy that contributes to the instability of
the five-fold structure, and such a structure will disppear at large enough size. The elastic
deformation and the elastic energy in the MTRs are of fundamental importance for studying
the stability and the properties of the MTRs.

The elastic deformation in MTPs was first studied by Ino with the assumption of uniform
deformation [8]. However, we found that this assumption is not reasonable [14]. As for Ni
and Lennard-Jones icosahedral clusters, the numerical simulation results show that the bond
length increases on moving from the centre to the surface [6,15]. In this paper, we will discuss
elastic deformation and stability in MTRs.

2. Calculation of the distribution of elastic deformation in MTRs

Apparently each triangular subunit in the pentagonal rod has the same elastic deformation
for reasons of symmetry. So we can consider just one triangular rod in the MTR (as shown
in figure 1(d)) instead of five. We assume that the nanorods have the same elastic modulus
as the corresponding bulk material because each triangular rod has same the structure as the
corresponding bulk material (here only those materials with an fcc structure are considered
because Cu has an fcc structure). The matrix of elastic stiffness constants in this coordinate
system is [8]: 



C ′
11 C12 C ′

13 0 0 0
C12 C11 C12 0 0 0
C ′

13 C12 C ′
11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C ′

44 0
0 0 0 0 0 C44


 (1)

where C ′
11 = 1

2 (C11 + C12 + 2C44), C ′
13 = 1

2 (C11 + C12 − 2C44), C ′
44 = 1

2 (C11 − C12) and
Cij is the elastic modulus of the corresponding fcc bulk material. We assume that the triangular
rod was deformed by a free triangular rod with an fcc structure (figure 1(d)). We would first
like to make some suggestions for simplifying the problem:

(1) As in icosahedral clusters [14], the MTR has a shell-like structure. So we can assume that
the difference in the elastic deformation at different places in same layer is very small.
This means that the elastic deformation and the elastic stress depend on coordinate y only.

(2) In each of the three surfaces of the triangular rod, the shear deformation components
parallel to the surface are zero due to the symmetry of its twin boundaries and the boundary
condition at the external surface. Thus it is reasonable to neglect the shear components of
the elastic deformation and the elastic stress in the triangular rod.

We denote by exx(y), eyy(y), ezz and σxx(y), σyy(y), σzz(y) the elastic deformation and
elastic stress components along the x, y and z directions, where the z direction is the axial
direction of the MTR.

As shown in figure 1(d), the edge length on the surface is deformed from a0 to a = (1 +
exx(y))a0 and the triangular height is deformed from h0 to h = (1+ 1

h

∫ h

0 eyy (ξ) dξ)h0. In order
to form an MTR without any gap, the ratio of a to h should be a/h = 2 tan(π/5) = 1.4531.
In fact, this relationship should hold for any small subunit from the centre to y because the
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small subunit from the centre to y is deformed by a small free triangular rod with fcc structure.
Thus, we have a constrained equation:

1 + exx (y)

1 + 1
y

∫ y

0 eyy (ξ) dξ
= 1 + δ y ∈ [0, h] (2)

where δ = 0.027 066. Because both exx (y) and eyy (y) are much smaller than 1.0, the above
equation can be simplified as

exx (y) − 1

y

∫ y

0
eyy (ξ) dξ = δ. (3)

By denoting the external pressure under which the MTR grows as P0, we have a boundary
condition:

σyy(h) = −P0. (4)

(3) Supposing that the pressure perpendicular to the twin boundaries is σxx(y). In order to
hold the dynamic balance, the total external force on any part of the triangular rod from
y − y + dy is zero. This leads to another equation:

σxx = ζ
dσyy

dζ
+ σyy y ∈ [0, h]. (5)

Omitting the influence of the shear components of stress tensor and deformation tensor,
Hooke’s law can be write as:(

σxx(z)

σyy(z)

σzz(z)

)
=
(

C ′
11 C12 C ′

13
C12 C11 C12

C ′
13 C12 C ′

11

)(
exx(z)

eyy(z)

ezz(z)

)
. (6)

The reverse of Hooke’s law is:(
exx

eyy

ezz

)
=
(

A11 A12 A13

A12 A22 A12

A13 A12 A11

)(
σxx

σyy

σzz

)
(7)

where

(
Aij

) = 1

�


 C11C ′

11 − C2
12 C12C ′

13 − C12C ′
11 C2

12 − C11C ′
13

C12C ′
13 − C12C ′

11 C ′2
11 − C ′2

13 C12C ′
13 − C12C ′

11
C2

12 − C11C ′
13 C12C ′

13 − C12C ′
11 C11C ′

11 − C2
12




and

� = C11C ′2
11 − 2C ′

11C2
12 + 2C2

12C ′
13 − C11C ′2

13.

For an nanorod of infinite length, ezz should be constant, so we have

A13σxx + A12σyy + A11σzz = ezz = const. (8)

Introducing formulae (5), (7) and (8) into equation (3), we can get an Euler differential
equation:

ζ 2 d2σyy

dζ 2
+ 3ζ

dσyy

dζ
+ βσyy + γ = 0 (9)

where

ζ = y

h
β =

(
A2

11 + A2
12 − A2

13 − A11A22
)

(
A2

11 − A2
13

) and γ = (A13 − A12) ezz − A11δ(
A2

11 − A2
13

) .

This equation can be simply solved as

σyy = Py1ζ n + Py0 (10)
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where n = √
1 − β − 1, Py1 = (P0 + γ

β
), Py0 = −γ /β. From the above equation and

equations (5) and (8), we can get the other components of elastic stress:

σxx = Px1ζ n + Px0

σzz = Pz1ζ n + Pz0
(11)

where

Px1 = (1 + n)

(
P0 +

γ

β

)
Px0 = −γ

β
Pz1 = −

(
A13 (1 + n) + A12

A11

)(
P0 +

γ

β

)

Pz0 =
(A12 + A13)

γ

β
+ ezz

A11
.

From Hooke’s law, the three components of elastic deformation are

exx = D11ζ n + D12

eyy = D22ζ n + D21

ezz = const

(12)

where

D11 =
(

P0 +
γ

β

)(
A11 (1 + n) + A12 − A2

13 (1 + n) + A12A13

A11

)

D12 = γ

β

(
A2

13 + A12A13

A11
− A11 − A12

)
+

A13

A11
ezz

D22 =
(

P0 +
γ

β

)(
A12 (1 + n) + A22 − A13A12 (1 + n) + A2

12

A11

)

D21 = γ

β

(
A2

12 + A12A13

A11
− A22 − A12

)
+

A12

A11
ezz.

The distribution of elastic energy density and the average elastic energy in the MTR are

ε(ζ ) = E2ζ 2n + E1ζ n + E0

ε = 2

2 + 2n
E2 +

2

2 + n
E1 + E0

(13)

where

E2 = D11Px1 + D22Py1 E1 = D11Px0+D12Px1 + D22Py0 + D21Py1 + ezzP21

E0 = D12Px0 + D21Py0 + ezzPz0.

3. Discussion

3.1. The distribution of elastic deformation in MTRs.

Figures 2(a)–(c) show the distribution of elastic deformation, elastic stress and elastic energy
in the MTRs of Ag, Au and Cu at zero surface pressure (P0 = 0) and zero deformation in the
axial direction (ezz = 0). It is clear that the central part of the MTR is more compressed than
the outer part, and the elastic energy in the central part is many times higher than that in outer
part. The elastic stress σxx in the central part (about y < 0.4h) is negative whereas σxx in the
outer part (about y > 0.4h ) is positive. This indicates that the central part of the icosahedron
is compressed whereas the outer part is tensioned in the x direction. Such a distribution of the
elastic stress is favourable for keeping the force balanced.
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Figure 2. The elastic deformation (a), tension (b) and energy distribution (c) in the MTRs of Cu
(full curves), Au (broken curves) and Ag (dotted curves) at zero external pressure (P0 = 0) and
zero deformation in the axial direction (ezz = 0).

From figure 2(b) we can see that the elastic pressure ranges from 50 000 to 80 000
atmospheres in the centre whereas the tension in outer part is about 20 000 atmospheres.
It is well known that many physical and chemical properties of materials (such as the Raman
spectrum, density of states (DOS) and melting point) depend on the pressure. So a high non-
uniform distribution of elastic stress in the MTRs may make these properties different from
those of the corresponding bulk material. Further study about how the non-uniform elastic
deformation in MTRs influences their properties is needed.
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3.2. Comparison with the results of numerical simulation

In order to test our theory, the stable structure of Ag, Au and Cu MTRs with 12 shells (containing
456 atoms per layer along the axial direction) were simulated numerically. The interaction
between atoms is the widely used TB-SAM (second moment approximation of the tight-binding
scheme) potential [16], and the parameters of these materials are same as those in [16]. The
numerical simulation begins with a given MTR structure, and the steepest descent method was
use to make the given structure reach a local stable state. After we obtained the local stable
state, the average bond length deformation in each shell and that between adjacent shells were
calculated. The components of elastic deformation along the x and y directions were calculated
according to the average bond length deformation. The results are shown in figures 3(a)–(c).

Figures 3(a)–(c) show the elastic deformation in Ag, Au and Cu MTRs. The scatter
symbols in these figures are the results of the numerical simulation and the full curves are the
results of the present theory. From these figures we can conclude that the numerical results
prove the validity of the present theory since the numerical and theoretical results are in very
good agreement. Both the deformation along the x direction and that along the y direction
increase on moving from the centre to the surface, which means that the average bond length
in the central part is about 1–2% shorter than that in the outer part.

3.3. The stability of MTRs

In order to discuss the stability of the MTR structure we must consider other rods with bulk
structure (fcc structure). There are many possible shapes for nanorods with an fcc structure.
Here we consider hexagonal rods because of their lower surface energy. As shown in figure 4,
four of the six surfaces of such a rod are (111) facets and the other two are (100) facets. The
surface energies of the (111) facet and the (100) facet of the fcc structure are often lower than
those of other kinds of facets.

The difference in energy between an MTR and bulk material with same volume is

�EMTR = 5γ100al +
5

2 cos( 3
10 π)

γtal +
5

2
la2 sin

(
3

10
π

)
ε (14)

where l is the height of the rod and γ100 and γt is the surface energy density of (100) facets and
the twin boundaries. The first term of equation (14) is the surface energy of the five external
surfaces, the second term is the surface energy of the five twin boundaries and the third term is
the elastic energy in the MTR. The first two terms are proportional to the edge length a whereas
the third term is proportional to a2. The surface energy dominates for thin rods whereas the
elastic energy dominates for large ones. The energy difference between a hexagonal rod and
the bulk material with same volume is

�Ehex = 4γ111b1l + 2γ100b2l (15)

where γ111 is the surface energy density of (111) facets and b1, b2 are the edge lengths of
the hexagonal rod (in figure 4(b)). The volume of such a hexagonal rod with unit height
is V = 1.633b1b2 + 0.942 81b2

1. For hexagonal rods with constant volume and height, the
energy varies with the ratio of b2 to b1. By simple calculation, we can get the ratio of b2 to
b1 of the hexagonal rod with the lowest energy when its volume and height are kept constant:
b2/b1 = 2(

γ111

γ100
− 0.5773). Figure 5 shows the volume dependence of the energy difference

between Cu MTRs and hexagonal rods with the lowest energy. It is clear that the energy of
such a hexagonal rod is lower than that of an MTR with same volume. This indicates that
the MTR structure is a kind of metastable structure but the global minimum structure of the



120 F Ding et al

0.0 0.2 0.4 0.6 0.8 1.0

-0.03

-0.02

-0.01

0.00

0.01

0.-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

-0.03

-0.02

-0.01

0.00

0.01

0.02

(c)

e
yy

e
xx

Cu

E
la

st
ic

de
fo

rm
at

io
n

y/h

(b)

e
yy

e
xx

Au

E
la

st
ic

de
fo

rm
at

io
n

(a)

e
yy

e
xxAg

E
la

st
ic

de
fo

rm
at

io
n

Figure 3. Comparison of the results of the numerical simulation (scatter symbols) with those of
the present theory (curves) for elastic deformation for Au (a), Ag (b) and Cu (c) at zero external
pressure (P0 = 0) and zero deformation in the axial direction (ezz = 0).

nanorods. Similar results are obtained for other fcc metals such Au, Ag and Ni. Maybe this is
the reason why nanorods with multiple twin structure are rarely observed.

Whereas the MTR structure can exist at nanometre size, it will disappear with an increase
in size because of its non-periodic structure. At a certain critical size the MTR structure is
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Figure 4. The structure of hexagonal rods with an fcc structure. (a) A three-dimensional photo
of a section of a hexagonal rod. (b) The structure of a projection of the hexagonal rod with edge
lengths b1 and b2, (111) and (100) denoting the two kinds of crystal plane in the fcc structure.
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Figure 5. The solid curve (broken line) is the volume dependence of the energy difference between
the MTRs (hexagonal rods) and the corresponding bulk materials.

impossible to stabilize: in fact it is the elastic energy in an MTR that makes it unstable. If an
MTR is unstable, a gap of 9.75◦ will appear at one of its five twin boundaries (as shown in
figure 6) and the elastic energy will disappear. So we can give a criterion for instability of the
MTR structure: an MTR will be unstable if the energy of the MTR with a gap of 9.75◦ is lower
than that of a perfect MTR. We can get the critical size ac of the MTR from this criterion:

ac = 4γ111 − 2γt

5 sin( 3
5 π)ε

. (16)

Table 1 lists the average elastic energy density and the critical size for some metals with
an fcc structure. The critical size for these metals varies from 20 to 100 nm. For Cu the
critical size is 53.1 nm, which is in good agreement with the size of the rods obtained in
experiments (25 nm).



122 F Ding et al
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Figure 6. A gap of 9.75◦ will appear at one of the twin boundaries if an MTR becomes unstable
with increasing size.

Table 1. The average elastic energy density in MTRs of some metals with bulk fcc structure and
their critical size.

Cu Au Ag Pb Ni Al Pd

Elastic energy (108 erg cm−3) 3.646 2.414 2.457 0.7198 12.77 1.648 3.777
Critical size a (nm) 53.1 68.2 51.4 78.8 20.4 86.2 49.6

In summary: the elastic deformation in a new kind of nanorod, pentagonal nanorods with
MTRs, was calculated based on elastic theory. The numerical simulation of Au, Ag and Cu
MTRs proves the validity of the present theory. The stability and instability of the MTRs was
discussed on the basis of the present theory. The MTR structure was found to be a quasistable
structure and such a structure will disappear at a size of around several tens of nanometres.
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